Approximation theory of the MLP
نویسنده
چکیده
In this survey we discuss various approximation-theoretic problems that arise in the multilayer feedforward perceptron (MLP) model in neural networks. The MLP model is one of the more popular and practical of the many neural network models. Mathematically it is also one of the simpler models. Nonetheless the mathematics of this model is not well understood, and many of these problems are approximation-theoretic in character. Most of the research we will discuss is of very recent vintage. We will report on what has been done and on various unanswered questions. We will not be presenting practical (algorithmic) methods. We will, however, be exploring the capabilities and limitations of this model. In the rst two sections we present a brief introduction and overview of neural networks and the multilayer feedforward perceptron model. In Section 3 we discuss in great detail the question of density. When does this model have the theoretical ability to approximate any reasonable function arbritrarily well? In Section 4 we present conditions for simultaneously approximating a function and its derivatives. Section 5 considers the interpolation capability of this model. In Section 6 we study upper and lower bounds on the order of approximation of this model. The material presented in Sections 3{6 treats the single hidden layer MLP model. In Section 7 we discuss some of the diierences that arise when considering more than one hidden layer. The lengthy list of references includes many papers not cited in the text, but relevant to the subject matter of this survey.
منابع مشابه
Theoretical properties of functional Multi Layer Perceptrons
In this paper, we study a natural extension of Multi Layer Perceptrons (MLP) to functional inputs. We show that fundamental results for numerical MLP can be extended to functional MLP. We obtain universal approximation results that show the expressive power of functional MLP is comparable to the one of numerical MLP. We obtain consistency results which imply that optimal parameters estimation f...
متن کاملA TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملCalculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملMulti-layer perceptrons and probabilistic neural networks for phoneme recognition
Phoneme recognition can be viewed as classifying multivariate observations. Multi-layer perceptrons (MLP) and probabilistic neural networks (PNN) approach the decision problem using two complementary models. The MLP models the discriminant surfaces between different phoneme categories, essentially by piece-wise planar approximations, while the PNN approximates class conditional probability dens...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999